F2C-ACC Users Guide

Compiler Version 4.2

Developed by: Mark Govett
National Oceanic and Atmospheric Administration (NOAA)
Earth System Research Laboratory (ESRL)
August 2012

Additional information and user support:
http://www.esrl.noaa.gov/gsd/ab/ac/Accelerators.html
help.accel.gsd@noaa.gov

F2C -ACC is a translation tool used to convert Fortran code into C or CUDA. It was designed to
support a programming model in which Fortran code, running on the CPU, makes calls to routines
that are run on the GPU. These routines are translated by F2C-ACC into CUDA, the language used by
NVIDIA GPUs. The C code generation is useful for testing and debugging, and as a basis for OpenCL
generation. F2C-ACC generated code is processed by the m4 processor to resolve inter-language
differences between Fortran and C / CUDA on the targeted machine. The translator supports both
running a single routine on the GPU (accelerator style parallelization), and running multiple
routines on GPU while keeping data resident on the GPU. (whole model parallelization). For the
latter approach, communication is only required for model initialization, inter-process
communications and output of model grids.

Section I outlines steps needed to setup and configure the F2C-ACC compiler. Section II defines the
current Fortran language support and Section III discusses code generation options necessary to
build CUDA code. Section 1V lists all of the directives currently supported and provides syntax for
each. Finally, this compiler generates most of the CUDA code needed to execute code on the GPU,
however hand-coded modifications may be required in some instances. Section V discusses some
analysis capabilities added in Version 3, and Section VI highlights some programming examples
including the use of modules.

New Capabilities in Version 4

* Added support for Fortran modules with the following restrictions:

o Module variables used in GPU kernels must be copied explicitly via a copyln or
copyOut subroutine in which variables are passed to the given routine via
argument list.

o Subroutines in modules that become GPU kernels are not callable from Fortran
CPU code.

* Added automatic generation of data arguments required for each GPU kernel defined by
ACCS$REGION BEGIN/END directives.

Table of Contents

L. Setup and ConfigUuration ... ————————————————— 3
I1. LaNngUAZe SUPPOTL...cciiiiirsiismssmsissmssnsssssssnsssnsss 4
IIL. BUilding COAE ...t sssss s s s s s sssssssssssssesssssssnnss 5
IV. Parallelization Directives......ummmmmssssssssssssss 6
O 08 0 . - 7
O 033 0 1 9
ACCSINSERT ...oouriicasssesssasssssssssssssssssssasassssssssssassss s ssassssssssssssasssssssnas 10
ACCSINSERTC ..ouveucusssusssassssssssssssssssssssssssssssssssassssssssassssssssssssasssssssnas 10
ACCSREGION.....cctiicsssesisssasssssssssssssssssssssassssss ssssassssssssassssssssssasasssssssnas 11
ACCSREMOVEoicisiesissasssssssssssssssssssasassssss ssssassssssssassssssssssasassssassnas 14
ACCSROUTINE.....ccociusesissssssssssssssssssssssssssssssssssssassssssssssassssssssssassssssssssassssssssssassssssssassssssssssasasssssssnas 14
O 08 3 ' L O 15
ACCSTHREADooicsusesissassssssssssassssssssssasssssssnassssssssssasssssssssnas 16
V. Analysis Capabilities.......ssssssssssssssssssssssssssssanss 17
A. Data Movement (--ANalySiS=1) cmmmsnsssmsssnss 17
B. Variable Use (--ANalySiS=2) wumimsisnssassssssssassnss 18
C. DiagnostiCc MESSAZES ... s sssssss s sssansans 19
VI. GPU Parallelization EXamples.........cssssssssssssssns 20
Threading and blocking over a single dimension ... —————— 20
Threading over multiple dimenNSiONS. ... ——————— 21
L0 07 1010 X0 LT L 21
VIIL Limitations and Known Bugs ... 22

I. Setup and Configuration

=

Untar the gzipped file, and type “make” to build the compiler.

2. Install the m4 library (http://www.gnu.org/software/m4/).

NOTE: Generated code relies on the m4 macro library to handle different
operating system calling conventions between Fortran and C, collapse multi-
dimensional arrays, and support some Fortran intrinsic functions.

3. A makefile is provided in the examples directory for building CUDA or C source code.
a. Edit the Makefile as needed to define the location of your installed software.
(HOME, CUDA, etc).
b. Suffix runs are provided to generate .0 (CPU objects), .cu (GPU objects), and .m4
targets.

4. Download the CUDA toolkit from the NVIDIA site and install:
http://developer.nvidia.com/object/gpucomputing.html - -> CUDA Downloads

5. Read the CUDA Programmers Guide for information about GPU programming
http://developer.nvidia.com/cuda-toolkit-32-downloads

6. Build run-time tests in the examples directory
a. cd examples/gptl_lite; make; cd ..
b. make [driver_ftn] [driver_cpu] [driver_gpu]

i. driver_ftn - Fortran only executable
ii. driver_cpu - Fortran driver + F2C-ACC generated CPU routines
iii. driver_gpu - Fortran driver + F2C-ACC generated GPU routines

> ./driver_gpu
Data Movement Tests
ACCSDATA Test: PASSED

Correctness and Accuracy Tests

Intrinsics Test: PASSED
Scalar Test: PASSED
Module Use Test: PASSED

Memory and Performance Tests

Global2D: PASSED
Global2DSharedlD: PASSED
Global2Dloops: PASSED
Global2DSharedlDloops: PASSED
SharedChunk: PASSED
Global3D: PASSED
Global3DSharedlD: PASSED
Promote2DBlock: PASSED
Promote2DThread: PASSED
Shared3Dout: PASSED

ROUTINE MIN TIME (sec) MAX TIME (sec)

global2D 0.010 0.010
global2DsharedlD 0.003 0.003
global2Dloops 0.010 0.010
Global2DSharedlDloop 0.003 0.003
sharedChunk 0.015 0.015

global3D 0.009 0.009
global3DsharedlD 0.003 0.003
Promote2Dblock 0.016 0.016
Promote2Dthread 0.015 0.015
Shared3Dout 0.001 0.001

w

Il. Language Support

F2C-ACC supports the most commonly used language constructs for Fortran 77 and Fortran 90,
including most declarations, do-enddo, do-continue, if-else-endif, data, parameter, assignment
statements, and memory allocation. Language constructs not supported are the character, complex
and derived types, all I/0 statements, modules, while, where, forall, and select statements, and many
Fortran intrinsic functions. In the event a language construct (eg. "interface" statement) is not
supported, F2C-ACC will generate the following message that identifies the line in question:

F2C-ACC ERROR: 4,25 "Language construct not supported."

In this case, the error was on line 4, column 25. The message will be embedded directly in the output
text so users can modify the generated C or CUDA code as necessary.

The following intrinsic functions are currently supported:
abs, acos, asin, atan, ccos, cos, csin, exp, log, max, min, pow,
sign, sin, and tan.
Other functions can be added on request. In the event a mapping between a Fortran intrinsic and C
function is not available, or is not supported, a message will be generated that identifies the line in
question:
ERROR” 5,25 “Fortran intrinsic not supported.”

Where the line number and column number are given as 5 and 25 respectively in this example.

User defined kinds are not supported in this release but will be added in version 4.3.

Ill. Building Code

Two general types routines are supported: kernel routines that run only on the GPU, and device
routines that are executed on the GPU but launched from the CPU. Code generation is available thru
a script called F2C-ACC. The following run-time options are supported:

--comment Retain original array statements as comments

--Analysis=[1][2] Generate analysis information where,
1=DATA MOVEMENT, 2 = VARIABLE USE

--Constant [Varl=Value] [Var2=Value] Constant name / value pairs used for local variables

--Fixed Input files are f77 or f90 fixed format

--Free Input files are Fortran 90 free format
--Generate=[C][CUDA] Language Options: CUDA and C, default is CUDA
--OutputFile=<filename> Name of the generated output file

Generated code relies on the GNU m4 library (http://www.gnu.org/software_m4/) to resolve array
references, handle some intrinsic functions, and to resolve platform specific subroutine and function
calling conventions.

The examples directory of this distribution contains a sample Fortran subroutine, a Makefile, and a
README containing instructions for building source code.

IV. Parallelization Directives
The following directive are supported:

e ACC$DATA moves data between the CPU and GPU

allocates GPU constant and shared memory variables

e ACC$DO identifies block and grid level parallelism for Fortran do-loops

* ACC$INSERT inserts Fortran into the input source code before translation is done
* ACCS$INSERTC inserts C or CUDA code into the generated code

* ACC$REGION defines regions of code to be executed on the GPU

* ACC$REMOVE identifies code that will be ignored by F2C-ACC

* ACC$ROUTINE indicates how the routine will be called and used

* ACC$SYNC used for thread synchronization

* ACC$THREAD restricts execution to a single thread

Directive Continuation Lines

Free Format:

* Place an & at the end of the directive segment

e Use!ACC$> to continue the line, and continue using & as required for successive lines

!ACCSREGION (<nx>,<nz>, &
IACCS> <varl:in> &
IACCS> <var2:in>) BEGIN

Fixed Format:

e Use CACC$> or!ACC$> for each continuation line

CACC$REGION (<nx>,<nz>,
CACCS> <varl:in>

CACCS$> <var2:in>) BEGIN

ACCSDATA

This directive defines and allocates GPU memory, and can be used to copy data between the CPU and
GPU. The intent argument, data can be defined, allocated, and copied between the CPU and GPU.
Global, constant, local and shared memory are specified using the type argument to allocate memory
on the GPU.

References to allocated GPU global memory stored on the CPU for use by one or more kernel routine
as needed. The visibility of the pointer can be expressed using the scope argument.

Syntax:
IACC$DATA (< vars: intent [, type |>, [< vars2 ... >])
Required Arguments
vars comma separated list of variable names
intent intent of variables listed, options are:
in define, allocate and copy data to the GPU
out copy data from the GPU to CPU memory
none define and allocate memory on the GPU
Optional Arguments
type (default is global)
constant the variable uses GPU constant memory, is visible to all
kernels in the file. Only scalar constants are permitted..
local the variable uses GPU global memory, and visible to the
routine where it appears.
global the variable uses GPU global memory, and is visible to all
routines (via the extern scope in the ACCSREGION directive)
shared the variable uses GPU shared memory which is visible to all
routines in the file, but must be declared as shared in the
ACC$REGION directive.
Notes:
* Constant memory is persistent for the duration of program and is
available to all routines in the file.
* Global memory is persistent for the duration of the program and is
available to all routines.
e Shared memory is persistent for the duration of an ACCSREGION and is
available to all routines in the file where the variable is used.
* Local memory is persistent for the execution of the kernel and is
available to all routines in the given file.
Examples:

1. Defines a pointer and allocates GPU global memory. The two examples are equivalent.

IACCSDATA (<flux: none>)
!ACCS$DATA (<flux: none, global>)

2. Allocates shared memory on the GPU. Dimensions of the given variables must be
statically defined. If the dimension is a variable constant, an upper-case name must be
given using the —--Constant option.

F2C-ACC —-Constant NX=50 decls.f90

decls.f90
parameter (nx = 50)
real :: flux(nx)

IACCSDATA (<flux: none, shared>)

3. Declare U and V as GPU resident variables using the ACC$DATA directive. The in
keyword indicates data is copied from the GPU to CPU. The global keyword makes the
variable visible to other files and routines. Use the ACCSREGION to access the variables
u and v that are resident on the GPU where none indicates no copies between GPU and
CPU are needed. The extern keyword indicates the variable is defined in another file (in
this case: copyIn.f90).

copyIn.f90:
!ACCS$DATA (<u,v:in, global>
sub1.f90:
subroutine sl (nx,nz u, v)
real, intent (IN) :: nx,nz
real, intent (IN) :: u(nx,nz)

IACCSREGION (<NZ>, <NX>, <u, v:none, extern>,<nx,nz:1in>) BEGIN
<calculations using u & v>
IACCSREGION END

end subroutine sl

ACCSDO

Defines loops level parallelism for the GPU device. Two types are currently supported: VECTOR and
PARALLEL. The qualifier VECTOR is used for thread parallelism, and PARALLEL is used for block

level parallelism. The directives are placed in the code immediately before the do-loop to be
parallelized.

Syntax:
IACC$DO VECTOR (dim [, istart, istop[base-t]])
IACC$DO PARALLEL (dim [, istart, istop])
Required Arguments
dim: identifies the dimension of the thread or block parallelism
Optional Arguments
istart start index
istop stop value
base-t thread 0 index
Examples:

1. Using the keyword PARALLEL, identify the next do-loop as block calculations
executed by the first dimension of the grid block.

2. Using the keyword VECTOR, identify the next do-loop as thread calculations to
be executed by the first dimension of the thread block.

real var3D(nz,nx,ny)

IACCSREGION (<nz>, <nx,ny>) BEGIN
lacc$do parallel (1,2:nx-1,1)
do 1=2,nx-1
lacc$do parallel (2,2:ny,1)
do j=2,ny
lacc$do vector(l,3:nz,2)
do k=3,nz
var3D(k,i,j) = 0.0
enddo
enddo
enddo
IACCSREGION END

ACCSINSERT

This directive is used to insert additional Fortran statements into the original source code before
translation C or CUDA is done. For example, nvcc does not support kernel routines, defined in one
file and called in another; they must exist in the same file. To overcome this restriction the
ACCS$INSERT directive is used as follows:

File: subl.f90

ACCSINSERT include “my function.cu”
subroutine subl ()

call my function() ! function defined in my function.cu

end subroutine subl

ACCSINSERTC

In contrast to ACC$INSERT, this directive inserts CUDA or C code directly into the generated code.
This directive is useful for getting around limitations of the F2C-ACC compiler, such as including print
statements, #include files, initializing the GPU, and other statements.

File: subl.f90

subroutine subl ()

IACCSREGION (<nz>,<nip>) BEGIN
IACCS$SDO VECTOR (1)
do k=1,nz
IACCSDO PARALLEL (1)
do i=1, nip
a(k,1) = a(k,1)**2/1k

IACCSINSERTC if ((threadIdx.x ==0) && (blockIdx.x == 0)) {
IACCSINSERTC printf (Ya(l,1) = $f\n”,a(1,1));
I ACCSINSERTC }
enddo
enddo

IACCSREGION END
end subroutine subl

10

ACCSREGION

Defines a region for GPU acceleration. Generated code will copy all data with intent (IN) or (INOUT)
to the GPU, and copy all data with intent (OUT) or (INOUT) back to the CPU after completion of the
GPU kernels, unless the intent for each variable is specified.

Syntax:
IACC$REGION (<threads [thread_option]>,<blocks >
[,<varl [=> my_varl] : intent, scope, mote >] [, <var2 ... >]) BEGIN
IACC$REGION END
Required Arguments
threads number of threads in one or two dimensions
blocks number of blocks in one, two or three dimensions

Optional Arguments - referred to as the data section

Notes:

Thread_option
chunk threading and blocking will applied to a single dimension
blocks=factor blocking factor or multiple of the given thread dimension

varl variable name
my_varl map variable to another variable (see example 4)
intent intent of variables listed
in copy data to GPU before the kernel is executed
out copy data to CPU after kernel has executed

inout copy to the GPU before and to CPU after the kernel completes
none datais GPU resident, no copies are needed

scope defines the type of variable (default is global)
extern assumes the variable has been defined in another routine or file
local use GPU local memory, scope restricted to a single executing thread
global use GPU global memory, data is allocated from the CPU
shared use GPU shared memory, where the intent applies to copies between GPU
global and shared memory
mote promote (dim)
variable promotion (see examples/PromoteDemoteTests.f90)
demote (dim [, dim])
variable demotion (see examples/GlobalSharedTests.f90)

The number of threads must be equivalent to the variable dimension over which the loop
calculations are done.
o The optional thread argument ‘chunk’ allows blocking and threading over a single
array dimension. See Section VI for details.
o Optional block=factor permits multiple blocks to be combined in a thread block. Se
section VI for details.

The following C programming language defaults apply:

o all scalars are pass-by-value, and arrays are pass-by-reference, unless otherwise
specified.

11

The optional arguments allow the programmer to list variables used in the region, and give
their intent and scope. If these optional values are not given, they are determined
automatically thru variable analysis. In cases where intent is not explicitly given (via the
intent attribute), variables are assumed to be local to the CPU and require intent inout. No
inter-procedural analysis is done.

Examples:

1.

Data Movement: U3d is copied to the GPU using ACC$DATA directive. The ACC$REGION
directive designates the local variable f1ux to GPU prior to executing the kernel; u3d with

intent none is a GPU resident variable and no data copies between CPU and GPU are
required.

copyIn.f90:
IACCSDATA (<u3d:in>)

flux.f90:
IACCSREGION (<nz>,<nip>,<flux:in,local>, <u3d:none, extern>)
IACCS> BEGIN
< stmts using flux and u3d>
IACCSREGION END

Variable remapping may be needed to support program execution where s1 is called two
times to perform calculations on two variables: u and v. A variable may need to be added to
the subroutine to discern between the invocations of s1. In this example, ACC$DATA is used
to declare u and v on the GPU and ACC$REGION users remaps the variable var to u or v
depending on the value of callSite.

copyIn.f90:
IACCSDATA (<u,v: none, global>

call sl (u,1l)
call sl (v,2)

sub1.f90:

subroutine sl (var, callSite)

real var(nz,nx,ny)

!ACCSREGION (<var=>u[callSite==1],var=>v[callSite==2]) BEGIN
<calculations with var>

|ACCSREGION END

end subroutine sl

GPU Shared Memory: The ACC$DATA directive must be used to define shared memory
variables. Shared memory is allocated statically, so the array dimensions must be a constant.
If no sizes are specified, the size of original array will be used. Use F2C-ACC --Constant
var=dim to define dimensions if required.

sub1.f90
real :: u3d(nz,nx)
IACCSDATA (<u3d:none, shared>)

F2C-ACC --Constant nx=1000,nz=50 subl.f90
- defines NX=1000, NZ=50 and _ shared float u3d(NZ,NX)

12

GPU Shared Memory Data Movement: The intent of a global or local variable manages data
copies between GPU and CPU. In contrast, the intent of a shared memory refers to data
copies between GPU shared and global memory. Entries for both CPU-GPU and global-
shared may exist in an ACC$REGION directive.

Note: Only intent none is currently supported; copies between GPU global and shared
memory will be added in a future version. The example designates a CPU to GPU copy, given
by intent in, of u3d. An additional copy from GPU global memory to shared memory is
specified by intent in for the shared entry: <u3d:in,shared>.

copyIn.f90:
!ACCSDATA (<u3d:none,shared (50,1000) >)

flux.f90:
IACCSREGION (<nz>,<nx>,u3d:in,local>, <u3d:in, shared>) BEGIN
< stmts using u3d>
IACCSREGION END

13

ACCSREMOVE

This directive is used to remove Fortran text before it is translated. ACC$REMOVE is often used in
conjunction with ACC$INSERT to replace Fortran with valid CUDA or C. The directive also helps get
around limitations of the F2C-ACC compiler, while preserving the original Fortran code.

Syntax:
IACC$REMOVE BEGIN

IACC$REMOVE END

ACCSROUTINE

This directive identifies the way in which the function or subroutine will be executed: as C routine
called by Fortran, as a C routine that executes on the CPU (and could launch GPU routines), or as a
routine that executes on the GPU when CUDA is specified, or on the CPU when it is not.

This directive must be placed just before the subroutine or function.

Syntax:
IACC$ROUTINE (type [: chunk [= dim]])
Required Arguments
type specifies how the routine is called
FORTRAN - called from a Fortran routine
CPU - called from a F2C-ACC C generated routine from the CPU
GPU - called from a F2C-ACC C generated routine from the GPU; reverts
to cpu if C code generation is specified (rather than CUDA)
Optional Arguments
dim thread / block dimension in which chunking should be done.
NOTE: This option is only valid for the type: GPU
Examples:
!ACCSROUTINE (GPU : chunk) ! chunks over the first thread / grid block

subroutine run_on_GPU_only(args)
!ACCSROUTINE (CPU) !routine is called from C code

!ACCSROUTINE (FORTRAN) !routine is called from Fortran

14

ACCSSYNC

This directive is placed in the code to insure thread synchronization within each thread block.
Synchronization is needed when (1) there are more threads than can be contained in a single warp
(32 threads), and (2) there is a dependency between one or more elements of a variable.

In the following example, the elements of array a will be scheduled to run on a single streaming
multiprocessor (SP) of the GPU on three warps (32 threads each). A synchronization is placed
between the loops, because b (33), executing on the second warp (threads 32-63), requires b (32)
which is updated on the first warp.

sub subl ()

integer, parameter:: nz=96
real a(nz,nip)

!ACCREGION (<nz>,<nip>) BEGIN

IACCSDO PARALLEL (1)
do i=1,nip
IACCSDO VECTOR (1)
do k=2,nz
a(k,i) = c(k,i)**2.
enddo
enddo

'ACCS$SYNC

IACCSDO PARALLEL (1)
do i=1, nip
!ACC$DO VECTOR (1,2:nip, 1)
do k=2, nip
b(k,1i) = a(k-1,1)
enddo
enddo

end subroutine subl

15

ACCSTHREAD

This directive defines GPU calculations to be executed by a specific thread. This directive is generally
used for array references to a specific array index, but can also be used to serialize GPU calculations.
There are two forms of this directive. The single line directive applies to the next executable
statement. The multi-line directive, bounded by BEGIN / END, applies to all statements contained the

directive pair.

Syntax:
IACC$THREAD (thread)

IACC$THREAD (thread) BEGIN
IACC$THREAD END

Required Arguments

thread thread number
Optional Arguments

dim thread block dimension
Restrictions:

e Must appear within a defined accelerator region (ACC$REGION)

* Threaded region must be terminated before another is started.

* Dim is not currently supported, so the directive only applies only to the first
dimension of the thread block.

Examples:

1. Single line statement

real a(nz,nx,ny)

!ACCSTHREAD (1)
a(l,i,3) =0

2. Multi-statement executed by thread number 1.

!ACCSTHREAD (1) BEGIN
do i=1, nx
do j=1, ny

a(l,i,j) =0
enddo
enddo
!ACCSTHREAD END

16

V. Analysis Capabilities

An upgrade in F2C-ACC version 4.2 automatically generates variable analysis for all variables
contained in each accelerator region (lACC$REGION BEGIN / END). The arguments are based on the
assumption that variables passed via subroutine arguments reside on the CPU. When variables are
used in an accelerator region, a copy between CPU and GPU is generated (intent IN). When variables
are updated in an accelerator region, they are copied from the GPU to CPU at the end of the region
(intent OUT). If multiple accelerator regions appear in a single routine, inter-region analysis is done
to reduce copies between the CPU and GPU.. The -Analysis=1 option for F2C-ACC will list the intent
required for each accelerator region.

To improve variable analysis, it is recommended that the intent attribute be specified for each
variable passed via the subroutine argument list.

A. Data Movement (--Analysis=1)

This option analyzes all variables to determine if they need to be passed between CPU and GPU.
Output from the analysis will be a recommended string which can be placed in the data section of the
ACC$REGION. For example:

ysu.f90 ACCSREGION line 0266 recommended data section arguments are:
<ims,ime, jms, jme, kms, kme:in>,<a,b,c:inout>

If there are no changes required, the following message will be given:

ysu.f90 ACCSREGION line 845: Data section is properly defined.

Current Limitations:
* Loop variables “updated” in the GPU region are communicated to the CPU
* Constants are included in the string and must be removed
* Intent may not be correct for variables updated within an if-conditional or subroutine

Work is continuing to fix these issues and improve the analysis capabilities.

17

B. Variable Use (--Analysis=2)

This option is designed to look at how frequently each variable is accessed in the GPU regions
contained within a single file. The information can be useful for determining likely candidates for
using GPU shared memory. Since the scope of shared memory variables are file based, the analysis
gives the number of accesses for each variable, used in one or more GPU regions. Output is given for
variables accessed at least 4 times. Some generated output from this analysis is given:

>F2C-ACC --Analysis=2 ysu f2cacc.F90

Running F2C-ACC Code Analysis

F2C-ACC Analysis:
F2C-ACC Analysis:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:
variable:

1D
1D
2D
2D
2D
2D
2D
2D
1D
2D
2D
1D
1D
1D
2D
2D

93 arrays used in 6 GPU regions were analyzed.

52 arrays contained at

kpbl
hpbl
xkzh
xkzm
zq
ux
VX
ax
brup
f1l
za
pblflg
brcr
ust
xkzqg
thvx

was
was
was
was
was
was
was
was
was
was
was
was
was
was
was
was

used:
used:
used:
used:
used:
used:
used:
used:
used:
used:
used:
used:
used:
used:
used:
used:

least
times
times
times
times
times
times
times
times
times
times
times
times
times
times
times
times

4 accesses:

-—>

115
1 17

o
o

NOOOR UOONNNO®O
o

18

=N

B UNDONO®OO BB U BB U

i
OFP OONOHFROOMNOOOOR OB

OCORFRPONOWWONKB®DNORRENN

OO0OO0OO0OO0OO0OHOOR R OOOOR

Decl: kpbl[its:ite]

Decl: hpbl[ims:ime]

Decl: xkzh[its:ite,kts:kte]
Decl: xkzm[its:ite,kts:kte]
Decl: zqg[its:ite,kts:kte+l]
Decl: ux[ims:ime, kms:kme]
Decl: vx[ims:ime, kms:kme]
Decl: gx[its:ite,kts:kte*ndiff]
Decl: bruplits:ite]

Decl: fl[its:ite, kts:kte]
Decl: za[its:ite, kts:kte]
Decl: pblflg[its:ite]

Decl: brcr[its:ite]

Decl: ust[ims:ime]

Decl: xkzg[its:ite, kts:kte]
Decl: thvx[its:ite,kts:kte]

C. Diagnostic Messages

1. Communications between the CPU and GPU

In the event there are multiple GPU and CPU regions within a single Fortran subroutine,
analysis is done to determine if inter GPU / CPU communications is needed. Warning
messages are automatically generated if communications is required:

WARNING: <file><line,col> CPU-to-GPU communication needed for the referenced
variable.
WARNING: <file><line,col> GPU-to-CPU communication needed for the referenced
variable.

To resolve the warning, insert the referenced variable, with intent into the data
section of the relevant ACC$REGION directive.

2. Variable storage analysis

Each variable contained in an accelerator region is analyzed to determine if there is
sufficient storage for block level (ACC$DO PARALLEL) calculations. There must be an array
dimension for block calculations or each block will write to the same storage location,
resulting in an incorrect result. The following error will be generated in the event this
condition is detected:

ERROR: <file><line,col> Variable requires storage for DO PARALLEL calculations

19

VI. GPU Parallelization Examples

This section highlights more complex parallelization capabilities of F2C-ACC.
Threading and blocking over a single dimension

Parallelism can only be exploited when calculations are not dependent on another element in the
same dimension. In general, loops are parallelized for thread-level or block-level parallelization.
Normally, one dimension would be assigned the thread-level calculations (ACC$DO VECTOR), and
one would be given the block-level calculations (ACC$DO PARALLEL). Sometimes two independent

loops do not exist, and thread and block level calculations must be applied to the same array
dimension.

In the example below, the variable q2d contains only one independent dimension where parallelism
can be exploited. The option chunk is used in ACCSREGION to specify that 100 threads will be used
for the thread level calculations, and the next 100 points will be calculated by threads in block 2, as
illustrated. Note in the example, that the thread size of 100 is used to calculate the number of blocks
required for this loop. In the event the total number of points is not evenly divisible by 100 in this
example, an additional block is specified for the remaining calculations (<ime-ims+1/100+1>).
In addition, loop ranges (ims : ime) must be specified in ACC$DO VECTOR. Finally, either ACC$DO
VECTOR or ACC$DO PARALLEL could have been used in this example and would have generated
exactly the same CUDA code.

block1 block 2 block 3 block 4

subroutine physics(gv2d,g2d,ims,ime, kms,kme)

implicit none

integer i,k

real ;intent (INOUT) :: g2d(ims:ime,kms:kme)
real ;intent (IN) :: gv2d(ims:ime,kms:kme)

!ACCSREGION(<100:chunk>,<ime-ims+1/100+1>,<t3d:in>) BEGIN
do k=kms,kme-1

teither directive can be used, however you must specify the optional
!range values (ims:ime) to restrict execution points in the domain

!ACCSDO VECTOR(1l,ims:ime)
do i=ims,ime
g2d(i,k) = g2d(i,k+1) * gv2d(i,k)
enddo
enddo
IACCSREGION END

return
end subroutine physics

20

Threading over multiple dimensions

If the number of points in a single array dimension is small, threading over more than one dimension
can increase the thread count and potentially improve performance. This optimization, specified
using the chunk option in ACC$REGION, can only be done if the block and thread calculations are
independent.

The chunk takes an option field that identifies the block dimension in which the chunking will be
applied. If no value is specified, then the index of the block dimension will be used. In this example,
however, the option chunk=1 means chunking in thread dimension 2, will be applied to the first
block dimension. If the number of blocks, jme, were not evenly divisible by 2, an additional block
would be needed to calculate the remaining j points (eg. <(jme-jms+1)/2+1>). In addition, range
values jms : jme also need to be specified to restrict the data elements that are accessed as follows:
IACC$DO PARALLEL(1l,jms:jme)

subroutine physics(rd,t3d,ims,ime, jms, jme, kms,h kme)

implicit none

integer i,j,k

integer, intent (IN) :: nthreads

real ,intent (INOUT) :: t3d(ims:ime,kms:kme, jms:jme)
real ,intent (IN) :: rd ! gas constant
integer hpts

!ACCSREGION (< (ime-ims+1),2:chunk=1>,<(jme-jms+1)/2>,<t3d:in>) BEGIN
IACC$DO PARALLEL (1)
do j=jms, jme
do k=kms, kme
IACC$DO VECTOR(1)
do i=ims,ime
t3d(i,k,j) = t3d(i,k,j) * rd
enddo
enddo
enddo
IACCSREGION END

return
end subroutine flux

Using modules

Declarations that appear in a module are built with the Fortran source code. If you wish to use
variables defined in a module via a use statement, you must define a routine to copy data to the GPU.
Variables must be copied via argument list to the copy routine and the ACC$DATA directive must be
used to define pointers to CPU and GPU memory, allocate storage, and copy data as required to the
GPU. A working example of a copy routine can be found in examples/copyIn.f90.

Once data is resident on the GPU, declarations are listed in ACCSREGION with the extern qualifier.
This indicates that a pointer to GPU memory should be used. Similarly, for variables used in the CPU
generated C code, an additional pointer to CPU memory is available. A working example is shown in:
examples/use_module.f90 that references the module m1 which contains variables also in the copy
routine.

21

VII. Limitations and Known Bugs

F2C-ACC is not able to generate all of the code translations necessary to run code on the GPU. There
are several known areas where code modifications are required.

1. Fortran 90 Array Assignments

Array assignments must contain loops so the ACC$DO directive can be used to express
thread (VECTOR) or block (PARALLEL) level parallelism.

Original Source Modified Source

real a(nz,nx,ny) real a(nz,nx,ny)
do k =1, nz
do i =1, nx
do j = 1, ny
a = 0. a(k,i,j) = 0.
enddo
enddo
enddo

2. Modules are not currently supported. Replace use statements in the code by explicitly passing
arguments via each subroutine or function argument list.

3. I/0 statements are not permitted. Use !ACC$INSERTC and !ACCREMOVE to replace Fortran [/0
with C1/0.

Original Source Modified Source

I ACCSREMOVE BEGIN
read(6) a,b,c,d read (6) a,b,c,d
IACCSREMOVE END
IACCSINSERTC fread(6) a,b,c,d

22

